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Abstract.  Images are highly complex multidimensional signals, with rich and 
complicated information content.  For this reason they are difficult to analyze 
through a unique automated approach.  However, a hierarchical representation 
is helpful for the understanding of image content.  In this paper, we describe an 
application of a scale-space clustering algorithm (melting) for exploration of 
image information content.  Clustering by melting considers the feature space 
as a thermodynamical ensemble and groups the data by minimizing the free 
energy, having the temperature as a scale parameter.  We develop clustering by 
melting for multidimensional data, and propose and demonstrate a solution for 
the initialization of the algorithm. Due to the curse of dimensionality, for 
initialization of clusters we choose the initial clusters centers with an algorithm 
that performs a fast cluster centers estimation with low computation cost.  We 
further analyze the information extracted by melting and propose a structure for 
information representation that enables exploration of image content.  This 
structure is a tree in the scale space showing how the clusters merge.  
Implementation of the algorithm is through a multi-tree structure.  With this 
structure, we can explore the image content as an information mining function, 
we obtain a more compact data structure, we have maximum of information in 
scale space because we memorize the bifurcation points and the trajectories of 
the centers points in the scale space. The information encoded in the tree 
structure enables the fast reconstruction and exploration of the data cluster 
structure and the investigation of hierarchical sequences of image 
classifications. We demonstrate the effectiveness of the approach with 
examples using satellite multispectral image (SPOT 4) and Synthetic Aperture 
Radar – SAR and Digital Elevation Models – DEM derived from SAR 
interferometry  (SRTM). 
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1. INTRODUCTION 

Data mining and knowledge discovery are the processes of analyzing data from 
different perspectives and summarizing it into useful information.  Technically, data 
mining is the process of finding correlations or patterns of fields in large relational 
databases [1] . 

In this article a multi-scale image information mining method is presented. A 
similar approaches was proposed in  [3] based on an image hierarchical segmentation. 
The presented method is based an clustering by melting exploring the scale of the 
image feature space.  

1.1. Clustering  

Clustering is one of the most important methods in Data Mining applications.  
Clustering of data is a method by which large sets of data are grouped into clusters 
having similar behaviour, or dividing a large data set into smaller data sets based on 
some similarity measure. 

A clustering algorithm finds the centroid e.g. center of mass or center of gravity) 
of a group of data sets and determine cluster membership. Most algorithms evaluate a 
distance between a point and the cluster centroids.   The output from a clustering 
algorithm is a statistical description of the clusters, the centroids and the number of 
components in each cluster. 

The various clustering concepts available can be grouped into two  categories, by 
the type of structure imposed on the data  [1]:  

1. Hierarchical clustering  
2. Nonhierarchical clustering 

  
1. Hierarchical clustering  
A hierarchical clustering is a sequence of partitions in which each partition is 

needed to form the subsequent partition in the sequence.  These methods include 
those techniques where the input data are not partitioned into the desired number of 
classes in a single step.  Instead, a series of successive fusions of data are performed 
until the final number of clusters is obtained.  An important objective of hierarchical 
clustering is to provide a picture of the data that can be easy interpreted, such as a 
dendogram.  An example of hierarchical clustering is the melting algorithm.  

 
2.  Nonhierarchical clustering  (partitional clustering) 
These methods include those techniques in which a desired number of clusters is 

assumed at the start, and a single partition is found.  Points are allocated among 
clusters so that a particular clustering criterion is optimized.  A possible criterion is 
the minimization of the variability within clusters, as measured by the sum of the 
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variance of each parameter that characterizes a point.  Examples of nonhierarchical 
clustering are K-means, and Expectation-Maximization (EM)  

K-means has as an input a predefined number of clusters, and is a simple, iterative 
procedure.  This algorithm assigns each data point to the cluster center closest to it, 
forming in this way k exclusive clusters of the data. 

Expectation Maximization (EM) algorithm is a mixture based algorithm that 
assumes the data set can be modelled as a linear combination of multivariate normal 
distributions.  The algorithm finds the distribution parameters that maximize a model 
quality measure, called likelihood, producing the maximum likelihood (ML) solution. 

2.CLUSTERING BY MELTING AND OUR IMPLEMENTATION 

The clustering by melting algorithm is based on information theory and statistical 
mechanics and is the only algorithm that incorporate scale and cluster independence.  
Using information theory and statistical mechanics, Wong [7] showed that cluster 
centers correspond to the local minima of a thermodynamical free energy F that 
depends on the data points and the scale parameter β .  The algorithm is scale-space 
based and provides more effective clustering than other methods.  The basic idea is 
that clusters depend on the scale one uses to examine the data.  

At a very fine scale, every datum is itself a cluster, while at a very coarse scale, 
the whole dataset is a cluster. 

The number of minima of F depends on the distribution of the data points and the 
scale parameter beta, which is the "inverse temperature."  If we start with a large beta 
(low temperature) so that every data point is a cluster, then as we gradually decrease 
beta (increase the temperature), the clusters merge; and finally, at a very small beta 
(very high temperature), all data   points merge to one cluster. 

If clusters of several points indeed exist, the information should be present in the 
data itself.  Data points closer to the cluster center should give more information 
about the clusters while those far away should give less.  These different degrees of 
contribution can be modeled probabilistically by defining )( yxp as a contribution of 
data point x to a cluster center y. 

The problem is to find the set of cluster center y that best suit the data points x 
with respect some constraints.  The best solution is obtained by maximizing the 
entropy: 

)(log)( yxpyxpH
Dx

∑
∈

=  , 

where  is data space. D

Suppose the cost function is e , and maximizing the entropy with 
the constraint: 
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 we obtain  
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To make the connection with thermodynamics, the free energy is 
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−= .  At equilibrium, a thermodynamic system settles into equilibrium 

if it has minimum free energy.  
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For a given β , the problem of clustering is mapped to the problem of finding 

solution for y of Eq. (1).  However, for a general β , the solution cannot be found 
analytically.  The solutions are identical to the fixed points of the following map:  
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The solutions can be computed by an iterative equation (2) . 

Thus, the structure of the melting algorithm is: 

1. An initial high β is chosen and every data point is set as a cluster. 
 

2. β is decreased gradually. 
 

3. The mapping (2) is repeated N times or until the cluster converges. 
 

4. If two or more clusters, which previously were distinct, share the same 
center, the set of data associated with the new cluster is the union of those 
with the original clusters. 

 
5. If more than one clusters exist, go to 2.   

              Otherwise, stop. 
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The information obtained by melting algorithm is: 
 

• The set of clusters as functions of temperature   
• Trajectories of cluster centers as functions of temperature 
• Bifurcation points 
• Free energy schedule dependency of temperature 
• The sequences of hierarchical image classification 

 
This information can be used to explore the image content as an information 

mining function. 
 
However, due the computational complexity, an optimal data representation is 

needed for: 
 

• more compact data structure 
• fast and easy access to the information 

 
We propose a tree structure, that has a two node structure: 

 
Node1 contains: 

• a pointer to the same node structure  (to Node1) 
• a pointer to the following node structure  (to Node2) 

Node2 contains: 
• a vector for features (in our case we have four features for four bands) 
• a scalar for beta 
• a scalar for index, which is for image map 
• a pointer to Node1 
 

The index is necessary for this structure because if two clusters centers have the 
same value we put in the next level of the tree the same index.  With this index, we 
can obtain the sequences of images classification, as we can see in Section 4, in figure 
4, 11.  With this structure we can make fast and easy the plot of clusters centers 
versus temperature, as we can see in figures 5-8, 12, 13. Thus, is only necessary to 
cross the tree from the terminal nodes to the root node, for each terminal node, with a 
recursive function.  In our algorithm each level of tree corresponds to each 
temperature, and for this consideration, we can reconstruct the information of image 
from one temperature to another. 

The tree contains the complete information about the image in scale space, 
because we don’t record only the bifurcation points, but also the trace of all the center 
points in the scale space. 

The tree structure is a multi tree, which has a multi –tree to the left and a multi – 
tree to the right.  The tree is built from the terminal nodes to the root, because we 
wish that all the computations be done during the building of tree.   

The flowchart of this algorithm, which contains the melting algorithm and the tree 
structure, follows:  
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Reading the data from RAW files 

Cluster centers initialisation  
 

Choose β and the decrease step for β 

START

NO

STOP

Is 
NN > 1 

Decrease β 
Computing 

the new centers 

NN = number of nodes for current level

Building the tree

Tree initialisation  ( root node and terminal nodes )

YES 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1. Computational problem and dimensionality aspects 

The generalization of the algorithm for the multidimensional case raises two 
problems: 
 
• the computational complexity 
 
The computational complexity is : 
 

( )( ) ( )ti nnndnO 2log+××× β , 
 
where : 
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n is number of points 
d is the dimensions for the feature space 

in ,    βn is number of iterations 

( )tn2log  is the tree complexity, where is number of nodes 
from  tree, 

tn

 
  12= )1(n −÷β

tn
 

 
 

The solution for this is to split the computation into two steps:  
1. off-line – generating the tree information structure 
2. on-line – analyzing and exploring of image content stored in the tree 

information 
 

• the curse of dimensionality at algorithm initialization 
We can deal with this in many ways.  For example: 
1. choosing the initial clusters centers randomly.  However, in this case we can 

lose much information about data; 
2. choosing the initial cluster centers with another algorithm, such as the "Fast 

cluster centers estimation,” which will be discussed in the next section. 
The second way is better than first, because we don't lose information and with 

this we have a low computational cost, because we begin only with few data points as 
a cluster and not with all data points. 

3.1.1. Fast cluster centers estimation 
Numerical gradient estimation methods may be used in order to reduce the 

computational demands of a class of multidimensional clustering algorithms, or may 
be used in a direct way to make an initial exploration of large data sets by evaluating 
the number of existing clusters. 

3.1.1.1. Description of the Merging Gradient Estimation algorithm 
This algorithm is presented in Fox [5]. 
Assuming that clusters are regions of relatively high point density within the data 

space, which is to say that the rate of change of points occurrence with respect to 
distance travelled in all directions of the space is relatively high – i.e. higher than the 
rate occurrence which would be encountered if all the points were uniformly 
distributed over all the space since this represents the maximum entropy case in which 
any cluster exists. Furthermore clusters centers may then be considered as local 
maxima of such gradients. However this local maxima of the gradient, i.e. marginal 
density, has to exhibit a value greater than the marginal density that would occur if all 
the points were evenly distributed.  As a example the upper right graph of figure 1 
shows the density of points repartition in a two dimensional space and the marginal 
densities on the two axes of synthetic Gaussian data. 
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The computational procedure is as follows: 
First, of the N dimensional Gaussian data X of n elements is read. 
 

( )i
n

iii xxxX ,...,, = 21  ; i = 1,…,n (3) 

 
The next step is to sort the data for each of the N dimensions into ascending 

numerical order since travelling sequentially through sorted vectors corresponds to 
travelling along the different dimension axes. 

( )m
N

mmm sssS ,...,, = 21  ; m = 1,…,n (4) 

 

( )i
N

iim sssS ,...,,sort = 21  ; i = 1,…,n (5) 

 
Define the vector C representing the cumulative sum of points encountered as one 

move along any of the sorted vectors sj. 

Ci  = i ; i = 1,…,N-1 (6) 

 
The marginal density estimates in each direction may be then e interpreted as the 

gradient of the N graphs generated by plotting C versus sj the figure 1 (upper left and 
lower right graphs).  This exhibits the repartition of a Gaussian synthetic data for two 
dimensions of the feature space the marginal densities on two axes of this space and 
also the step functions C versus sj. However, to compute the gradients presented as 
well in these graphs a numerical differentiation from discretely sampled data is 
required. A simple but fast technique is applied here. It begins by filtering the sorted 
vectors sj in order to smooth out the raw data C versus sj curves. Hence, we obtain: 

∑
+

+

hm=r

h-m=12h
1 = 

r

r
j

m
j sf  

(7) 

 
The smoothing window used here is a parameter that determinates the scale of 

Gaussian structures we will detect. The next step is the computation of the gradient 
estimates gj . It may then be obtained from the smoothed C versus gj curves according 
to the constructions. 

hm
j

hm
j

m
j ff

g −+ −
2h =  

(8) 
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1,
1-n = 

j
n
j

jmean ff
g

−
 

(9) 

 
 
The second equation computes the average point density that would exist if the 

data was uniformly distributed in all the space. The edges may be computed for the 
filtering and for the gradient estimates by the use of descending spans. Then all local 
maxima of the gradient estimates, which are above the average marginal density 
value, have to be extracted.  The final step is to select only the maxima that 
correspond to an existing data value in the n different dimensions. Of course, the 
correspondence to the original data has to be saved. These maxima correspond to the 
approximated centers of the clusters. 

3.1.1.2 Algorithm optimisation 
In order to reduce the computational time of a ''classical'' sorting procedure, a 

sorting routine of complexity N*n (number of dimension by number of data points) 
has been developed. The idea is to scan the data only once and to sort, each data point 
for each dimension, in his associated dynamic collections itemized by his value. Then, 
for each dimension, the collections are concatenated by order of crescent value to 
constitute the N different sorted vectors. 

A last change is applied here in order to avoid centers of similar value. This can 
happen when irregularity remain after smoothing the data. The extra centers are 
simply removed. 

Finally, this algorithm has complexity N*n, what in time computation, constitute 
an advantage on for example the K-Means algorithm which has complexity N*n*K, 
where K is the number of cluster. Furthermore, the algorithm doesn't need to have a 
fixed number of clusters as an input. 

Taking into account the main quality of the algorithm, which is the low 
computational cost, the results shows a good efficiency versus time consumed. 

We tested this algorithm initially on 4 dimensional synthetic data composed of 
uniform distributed noise, and 3 Gaussian structures of different mean only in two 
dimensions in order to simplify the interpretation of the results. One of them has a 
larger variance. 

The algorithm performance in finding the correct number of Gaussian structures 
with their precise center values in a reasonable amount of time consumption depends 
on the smoothing parameter discussed previously. This parameter influences the 
regularity of the gradient function and consequently the number of maxima detected.  
Moreover, if we use a large smoothing window to detect only the relevant Gaussian 
structures, the lost of precision on the centers value will make it impossible to find the 
correspondence of maxima between the different dimensions. On one hand, we will 
obtain, by a small smoothing window, a good detection of all the clusters  
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Fig. 1.  Merging Gradient Algorithm on synthetic data set. 

 
but with many centers belonging to the same Gaussian and other unsignificant centers 
resulting from noise. The bottom left plot in figure 1 illustrates this effect. On the 
other hand, we will obtain, by a large smoothing window (which means a greater time 
consumption), single center detection for each Gaussian structure. However, some 
structures, as Gaussian of greater variance or lower density, may not be detected and 
we will loose precision on the center’s value. Currently, this parameter is estimated 
heuristically. However, a correct estimation of this parameter could be performed. 

The inability of finding a good estimate of the number of clusters when the 
structures are too different has little consequence when this algorithm is used only to 
initialise a more complex clustering algorithm such as ''Melting'' algorithm. 

3.1.1.3. Enhanced algorithm for estimation of number of clusters 
This fast center algorithm estimator may also be used to explore large data sets by 

estimating directly the number of Gaussian structures existing in the data and their 
center’s value.  We assume the data to be a mixture of Gaussians. The problem, to be 
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solved, is to detect Gaussian structures with different variances, densities, regularities, 
with only one maximum associated with each one of them. 

 

3.1.1.3.1. Removing the centers which migrate 
 A way to face this problem is to observe the evolution of the centers value given 

by the merging gradient estimator algorithm, while we compute their new value.  
To compute them, we first create classes associated to each center value. Each 

class regroups the smoothed data that present a minimum distance to each center 
value. The new center’s values are calculated as the gravity center of each class. 

Let's suppose we have detected all the structures with at least one center 
associated by an appropriate smoothing window. We will observe after the 
computation of the new center values a fast migration of unsignificant centers or 
centers which share the same Gaussian structure and divide it into more than one 
class. 

These “extra centers” will move to the barycenter of the “unclustered mass”.  
Therefore, the idea is to keep updating the centers, by removing those that migrate 

farther than a fixed limit, while we iterate the procedure describe above. 
This procedure will end when no remaining center migrates farther than this limit.  
 The choice of the migration limit depends on the topology of the smoothed data. 

We choose here a heuristic migration limit. However, an estimation of this parameter 
can be computed to optimise this choice. 

3.1.1.3.2. Injection of an attractor 
To enhance the migration phenomena, uniformed distributed noise can be injected 

in the feature space to favour as equally as possible the removal of the “extra centers”. 
The quantity of noise-injected must be adjusted so that it attracts only the “extra 
centers'” This noise mustn't drown or modify significantly any of the structures 
detected (i.e. its density must be much lower). The quantity of noise injected 
constitutes another parameter that has to be estimated. Here the estimation was again 
only heuristic. Performing the enhanced algorithm on the synthetic data set, the 
number and center values of Gaussian  structures were correctly estimated. The upper 
right plot of figure 1 shows that the unsignificant centers detected previously where 
effeciently removed. 

4. EXPERIMENTAL RESULTS 

4.1. Merging gradient algorithm applied on a SPOT image 

We applied the preceding algorithm on a sample 256*256 of a 4 Bands Spot4 
image from a region near Bucharest-Romania. The original image color 
representation  is presented in figure 2a. The repartition of the multispectral data in 
the feature space is illustrated in figure 3. 
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Three different center estimations have been computed leading to 142, 18 and 4 
cluster centers. The classification resulting of these clustering are presented in 
respectively figure 2b, c and d. 

The tuning of the parameters leads to different results : a over-estimation of the 
number of clusters in the first case. However, the 142 centers detected, which are 
ploted in the left plots of figure 3, will be used to initialise the melting procedure. The 
classification  with 4 classes is a sub-estimation of the number of clusters due to a too 
large smoothing window. The classification with 18 classes is a good fast number of 
clusters estimation. It is presented in the right plots of figure 3. 

The computation was for the example with 142 classes performed in 47 sec on a 
“300 MHz SUN, UltraSPARC-II”.and the K-means algorithm was computed with the 
same conditions and last 2,35 sec.  

 
 

 
a) b) 

 

  
c) d) 

 

Fig. 2. a) Original image (band 1, 2 and 3), classification with: b) 142 classes, c) 18 classes, d) 4 
classes 
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Fig. 3. center location, for classification with 18 classes (up) and with 142 classes (down), in 
feature space: band1-2 (left), bands3-4 (right) 

 

4.2. Clustering by melting for mining the image content 

Images are high complexity multidimensional signal with rich information 
content. The information extraction  in terms of image classification is not an easy 
task. The results depend on the used model – algorithm. Thus many times 
uncertitudes remains unsolved.  

In this paragraph we demonstrate the use of clustering by melting as an alternative 
solution for understanding images as a “data – mining” concept. 

With propose structure we obtain a sequences of hierarchical image, so we have 
more information of classification than only with one image. We can see what 
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clusters merge together, how many clusters we have at each temperature and we can 
choose what is the good number of clusters.  

In the classical solution, when we need the initial number of clusters we can lose 
clusters, because we don 't know the best number of clusters or we can have many 
clusters without points. 

The sequences of hierarchical image classification in figure 4 are for bifurcation 
points in figures 5 - 6 and in figure 11 for figures 12,13.  

Trajectories list the clustering one after another.  Cutting a trajectory at any level 
defines a clustering and identifies clusters. 
 

Input 1. Beta and step for beta 
2. Original image 
3. Center of clusters (initial configuration) 
4. Tree structure 
 

Output 1. Sequences of images classification 
2. Graphics of bifurcation points 

4.2.1. Example of mining multispectral data.  
We apply the mining method for the exploration of the information content of a 

multispectral image of agriculture fields. 
 

 
 
 
 
 
 
 

 
 

  

 
 
 
 
 
 
 
 
 

 

 
 

 

   

Fig. 4. Figures contains labeled images at initial β = 500 with decremental step ∆β =1.05 
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The trajectories of the cluster centers, in one dimensional projection, are presented 
in figures 5 – 8. 

 

  
Fig. 5. y1 Fig. 6. y2 

  
Fig. 7. y3 Fig. 8. y4 

Components of the trajectories of the cluster centers versus scale 
 
 
4.2.2.Example of fusion of SAR image and DEM. 
The paragraph presents the application of the proposed algorithm for understanding of 
a scene imaged by   the SRTM X-SAR sensor. 

The melting algorithm was applied on the pair SAR-Synthetic Aperture Radar 
image and DEM – Digital Elevation Model, thus a data fusion is performed. 
 

  
Fig. 9. SRTM - DEM Fig. 10. SRTM , X-SAR image 
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Fig. 11.  figures contains labeled images at initial beta=2000 with decremental step β∆ =1.05 

 
 

The trajectories of the cluster centers , in one dimensional projection, are 
presented in figures 12, 13. 

 

  
Fig. 12. y1 Fig. 13. y2 

 
Component of  the trajectories of the cluster centers versus scale 

 
The sequence of classification of the pair SAR image and DEM makes evident 
various types of  urban and non-urban areas. 
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5. CONCLUSIONS 

The article is presents an enhancement of the algorithm for clustering by melting 
and proposes its is use for image information mining. 

In our application, the implementation of the melting algorithm is a multi-tree 
structure and with it we can access easily and in a fast way the information, thus, we 
can rebuild the image information content at any temperature. Therefore, we can 
visualize the clusters of image and we can choose the best number of clusters for 
images. 

With fast cluster center estimation algorithm we reduce the computational cost 
which allows us to start the melting procedure with the appropriate number of clusters 
according to this computation cost. 

The multi-tree structure offers the possibility of accelerating the procedure by 
adjusting the error allowing cluster centers to merge together. 
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